Review No.2 / 2-2008

Pharmacology of Cannabinoid Receptors

Bela Szabo • Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg i. Br., Germany, Phone: +49 761 203-5312, Fax: +49 761 203-5318, E-mail: szabo@pharmakol.uni-freiburg.de

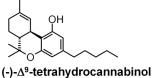
Introduction

Until 20 years ago, only vague explanations existed over the mechanism of action of products from Cannabis sativa. It was thought, for example, that the main psychotropic compound in the plant, Δ^9 -tetrahydrocannabinol, acts by changing cell membrane properties due to its high lipophilicity¹. This scarcity of knowledge started to change in 1990 with the identification of a G protein-coupled receptor for Δ^9 -tetrahydrocannabinol, the CB₁ cannabinoid receptor. Since then, a tremendous amount of information accumulated: additional receptors were discovered and endogenous agonists (endocannabinoids) of the receptors were identified. Many new synthetic agonists and antagonists of the receptors have been developed. Intensive research is carried out to clarify the physiological and pathophysiological roles of endocannabinoids. And, it is probed how diseases can be treated by exogenous cannabinoid receptor agonists or antagonists or by modulators of the biosynthesis or degradation of endocannabinoids.

Cannabinoid receptors

Two G protein-coupled receptors are firmly established as targets of cannabinoids, CB₁ and CB₂ receptors^{2,3} (for review see refs.^{4,5}). Both belong to the family A of G protein-coupled receptors, and lipid (sphingolipid) and prostaglandin receptors are rather near on the phylogenetic tree of receptors⁶. The amino acid identity between the two cannabinoid receptors is 44% (68 % within the transmembrane domains). The CB₁ and CB₂ receptors are typical $G\alpha_{i/o}$ protein-coupled receptors: they are sensitive to pertussis toxin and their activation leads to inhibition of adenylate cyclase (for review see refs.^{4,7}). The CB₁ receptor mediates inhibition of N-, P/Q- and L-type voltage-gated calcium channels and activation of G protein coupled inwardly rectifying potassium (GIRK) channels^{8,9}. In addition, several other types of potassium channels (mediating I_M , I_A) are also modulated. Interestingly, activation of CB₂ receptors did not lead to ion channel modulation, at least in one study¹⁰. Both receptors can activate the mitogen-activated protein kinase (MAPK) signaling cascade^{11,12}.

The CB_1 receptor is widely distributed in the central and peripheral nervous system (for review see ref.¹³). Two properties deserve to be particularly mentioned. First, compared with other G protein-coupled receptors, the density of CB_1 receptors is especially high in the brain. Second, the CB_1 receptors are preferentially located on axon terminals - their concentration in the cell membrane of somatodendritic neuronal regions is unexpectedly low. In addition to neurons, the CB_1 receptor has been found in the adrenal gland, bone marrow, heart, lung, prostate and testicles.


The CB₂ receptor is less widely expressed than the CB₁ receptor^{3,14} (for review see ref.¹⁵): it was detected in immune-related organs / tissues like the tonsils, spleen, thymus and bone marrow and in B lymphocytes, monocytes / macrophages, mast cells and microglial cells. It was recently discovered that the CB₂ receptor also occurs in neurons, but only in a few regions in the periphery and the brain, and at much lower concentrations than the CB₁ receptor^{16,17}.

Repeatedly, effects of cannabinoids were observed which could not be explained by the involvement of CB₁ or CB₂ receptors (for review see refs.^{18,19}), and a search was started for identifying additional cannabinoid receptors. It was discovered quite recently that the G protein-coupled orphan receptor GPR55 is activated by a series of phytocannabinoids, synthetic cannabinoids and endocannabinoids with remarkable potency^{20,21} (for review see ref.⁶). Therefore, GPR55 is a serious candidate to become an additional cannabinoid receptor. According to one study, the post-receptor transmission pathway for GPR55 involves the $G\alpha_{13}$ protein and activation of the small GTP binding proteins rhoA, cdc42 and rac1. Remarkably, the amino acid sequence homology between GPR55 and CB_1 and between GPR55 and CB_2 is low (< 15 %), and on the phylogenetical tree of receptors GPR55 is far away from the CB₁ and CB₂ receptors. In one study, GPR55 responded to lysophosphatidylinositol, but not to cannabinoids; therefore, it was suggested that it is not a cannabinoid receptor²².

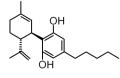
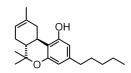
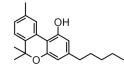

For promotion of studies of the roles of cannabinoid receptors in physiological and pharmacological phenomena, the cannabinoid receptors were genetically deleted in mice. At present, mice exist in which the CB₁ receptor^{23,24}, CB₂ receptor²⁵, CB₁ and CB₂ receptors (double knockout)²⁶ or GPR55 were knocked out²⁰.

Fig. 1. Cannabinoids in Cannabis sativa.

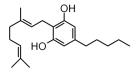
Dronabinol is the International Nonproprietary Name (INN) of $(-)-\Delta^9$ -tetrahydrocannabinol. Bold text indicates compounds available from **BIOTREND** (with catalogue numbers).


 $((-)-\Delta^9$ -THC, dronabinol) (BN0614)

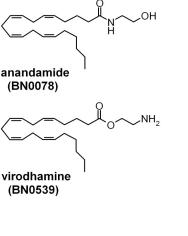

(-)-cannabidiol (BN0124)

Constituents of cannabis sativa

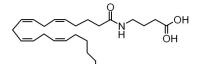
The plant Cannabis sativa synthesizes about 70 compounds which are chemically related to Δ^9 -tetrahydrocannabinol (many of them are terpeno-phenols)²⁷. These compounds are called cannabinoids. The psychotropic effects of the cannabis products marijuana and hashish are mostly attributed to Δ^9 -tetrahydrocannabinol which is an agonist at CB_1 and CB_2 receptors. Δ^8 -Tetrahydrocannabinol behaves pharmacologically similarly as Δ^9 -tetrahydrocannabinol. Cannabinol is a low potency partial agonist at CB1 and CB2 receptors²⁸. Cannabidiol was long considered to be inactive at CB₁ and CB₂ receptors, because it has low affinity in radioligand binding studies^{29,30}. However, it was shown quite recently that it is an antagonist at CB1 receptors and antagonist / inverse agonist at CB₂ receptors^{31,32} (for review see ref. ³³). It is remarkable that $\Delta^{9}\text{-tetrahydrocannabivarin}$ is an antagonist at both CB_{1} - and CB₂ receptors^{34,35}: the deletion of only 2 C atoms at the C3 side chain (see Fig. 1) transforms the agonist Δ^9 -tetrahydrocannabinol into the antagonist Δ^9 -tetrahydrocannabivarin.


(-)-∆⁸-tetrahydrocannabinol (-)-∆⁸-THC

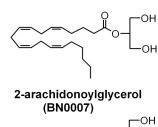
cannabinol (BN0125)

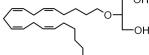

(-)- Δ^9 -tetrahydrocannabivarin

cannabigerol


Endocannabinoids

Soon after the identification of the CB_1 receptor, it was discovered that the brain produces endogenous cannabinoids (endocannabinoids) which are capable of activating the CB_1 receptor. At first, arachidonoyl ethanolamide was identified as an endocannabinoid; it received the name anandamide³⁶. Three years later 2-arachidonoylglycerol was identified as a second endogenous cannabinoid receptor agonist^{37,38} (for review see ref.³⁹). The concentration of 2-arachidonoylglycerol in the brain is 50-500fold higher than the concentration of anandamide³⁹⁻⁴¹. Anandamide is a partial agonist at CB_1 and CB_2 receptors, whereas 2-arachidonoylglycerol is a full agonist at both receptors in the majority of the studies. In addition to being a cannabinoid receptor agonist, anandamide also activates TRPV1 (vanilloid) receptors⁴²⁻⁴⁴.




N-arachidonoyldopamine (NADA) (BN0359) N-arachidonoylglycine (BN0369) N-arachidonoylglycine

N-arachidonoyIGABA (BN0691)

noladin ether (BN0390)

Fig. 2. Endocannabinoids. Bold text indicates compounds available from **BIOTREND** (with catalogue numbers). Several derivatives of anandamide and 2-arachidonoylglycerol have been identified in biological tissues. Virodhamine - a derivative of anandamide - has similar concentrations in the brain as anandamide; it is a weak partial agonist at the CB1 receptor and a weak agonist at the CB2 receptor⁴⁵. The ether derivative of 2arachidonoylglycerol, noladin ether, was also suggested to be an endocannabinoid; it is a potent agonist of CB1 receptors, but has low affinity for CB₂ receptors⁴⁶. Whereas in the original study noladin ether was identified in the brain⁴⁶, no appreciable amounts of noladin ether were found in the brain in a later study⁴⁷. N-arachidonoyldopamine (NADA) is found at appreciable concentrations in the corpus striatum; it activates TRPV1 receptors and at higher concentrations also CB₁ receptors^{44,48,49}. The arachidonoyl amino acids N-arachidonoylglycine, N-arachidonoyl γaminobutyric acid and N-arachidonoylalanine were also isolated from the brain⁵⁰.

Endocannabinoid biosynthesis, membrane transport and degradation (Fig. 3 and Table 1 show modulators of these processes)

Endocannabinoids are not stored in synaptic vesicles as classical transmitters are. They are produced "on demand" and leave the cells by diffusion or via a carrier. Their action on receptors is terminated by uptake into neurons and glial cells followed by enzymatic cleavage.

Anandamide. Depolarization followed by calcium influx into the cells triggers anandamide production which can proceed via several pathways (for review see ref.51). The first step of anandamide production is synthesis of N-arachidonoyl-phosphatidylethanolamine (an N-acyl-phosphatidylethanolamine; NAPE) by transfer of an arachidonoyl group from phosphatidylcholine to the ethanolamine moiety of phophatidylethanolamine⁵²⁻⁵⁴. During the second step, N-arachidonoyl-phosphatidylethanolamine is cleaved by one or several types of NAPE-specific phospholipases (of the D class) to yield anandamide^{55,56}. Recently, alternative mechanisms of anandamide production have also been described. Thus, N-arachidonoyl-phosphatidylethanolamine can be sequentially cleaved by phospholipase C and the protein tyrosine phosphatase PTPN22⁵⁷. Anandamide can also be produced from N-arachidonoyl-phosphatidylethanolamine by lipases (generating glycerophospho-anandamide) and a phosphodiesterase⁵8.

After release from cells, anandamide diffuses into surrounding cells. It is thought that the diffusion is facilitated by a special transporter, the endocannabinoid membrane transporter (EMT) (for review see ref.⁵⁹).

Table 1. Modulators of endocannabinoid production,membrane transport and degradation

<i>Target protein</i> anandamide	Inhibitor	IC ₅₀ (nM)	References
endocannabinoid membrane transporter (EMT)	AM404ª	1000-5000	60
· ,	VDM11 ^a	10200-11200	61
	UCM707	800	140
	LY2183240ª	0.270	62
fatty acid amide hydrolase (FAAH)	MAFP	6	72
5 ()	ATFMK	~1000	72
		<7500	71
	arachidonoyl-5-HT	5600-12000	73
	0L-92	0.28	74
	0L-135	2.1	141
	URB597	4.6	75
2-arachidonoylglycerol			
diacylglycerol lipase (DAGL)	orlistat (also called tetrahydrolipstatin)	60	87
	RHC-80267	~5000	86
monoglyceride lipase	MAFP	2-3	72
(MGL)		2	93
	ATFMK	20000-30000 66000	72 93
	N-arachidonoyl -maleimide (NAM)	140	94
	URB602	28000	95

^a These compounds are also inhibitors or competitive substrates of FAAH^{64,142,143}.

EMT is inhibited by the compounds AM404, VDM11 and LY2183240⁶⁰⁻⁶². However, it should be mentioned that the existence of the EMT is not unanimously accepted. Because many inhibitors of EMT also inhibit the intracellular cleavage of anandamide by fatty acid amide hydrolase (FAAH), it was suggested that anandamide is simply diffusing through the plasma membrane, and the diffusion is driven by the low intracellular concentration of anandamide due to hydrolysis by FAAH^{63,64}. Once in the cell, anandamide is cleaved by the membrane-bound enzyme FAAH⁶⁵ (for review see ref.⁶⁶). The molecular identity of this hydrolase is identified, and its genetic deletion leads to a marked decrease in anandamide degradation in the tissues⁶⁷⁻⁶⁹. It has been recently described that in some species, also in humans, a second FAAH enzyme can also hydrolyze anandamide, although at a much lower rate than the original enzyme⁷⁰.

MAFP and ATFMK are non-selective inhibitors of FAAH⁷¹⁻⁷². More selective inhibitors of FAAH have been recently discovered, for example, arachidonoyl-5-HT, OL-92 and URB597⁷³⁻⁷⁵. In addition, anandamide can be metabolized by cyclooxygenase-2 (COX-2) which generates prostaglandin ethanolamides from anandamide (for example, PGE₂ ethanolamide)⁷⁶.

2-Arachidonoylglycerol. Many cell types, including neurons^{41,77-80}, glial cells⁸¹, platelets⁸² and macrophages⁸³, can produce and release 2-arachidonoylglycerol. Typical triggers of production are an increase in the intracellular calcium concentration and activation of $G\alpha_{q/11}$ protein-coupled receptors (for review see refs.^{39,84}). The most established pathway for 2-arachidonoylglycerol production includes hydrolysis of phosphatidylinositol-diphosphate (PIP₂) by phospholipase C (PLC) and cleavage of the resulting diacylglycerol by diacylglycerol lipase (DAGL). DAGL was cloned by Bisogno et al.85. RHC-80267 and orlistat (also called tetrahydrolipstatin) are two identified inhibitors of DAGL, and orlistat is more potent and selective than RHC-80267^{86,87}. In addition to the above pathway, alternative ways for 2-arachidonoylglycerol production were suggested^{88,89} (for review see ref.³⁹). One alternative pathway would include generation of diacylglycerol from phosphatidic acid by a phosphatase and the subsequent action of DAGL. Another alternative way would be production of 2-arachidonoylqlycerol from 2-arachidonoylqlycerol-sn-qlycero-3-phosphate (a species of lysophosphatidic acid) by a phosphatase.

After production, 2-arachidonoylqlycerol leaves the cells and acts on receptors. The action of 2-arachidonoylglycerol is terminated by diffusion into cells - a membrane transporter may facilitate this diffusion, as in the case of anandamide. Within the cells, 2-arachidonoylglycerol is hydrolyzed by monoglyceride lipase (MGL), which was cloned and characterized^{72,90,91} (for review see ref.⁹²). The products of hydrolysis, arachidonic acid and glycerol, are devoid of effects on cannabinoid receptors. Additonal enzymes play only minor roles in 2-arachidonoylqlycerol elimination, degrading less than 15% of the produced 2-arachidonoylqlycerol. MGL can be inhibited by the nonspecific inhibitors MAFP and ATFMK (they also inhibit FAAH)71,72,93. N-arachidonoylmaleimide (NAM) also inhibits MGL⁹⁴. URB602 is a recently discovered moderately potent and selective (vs. FAAH) inhibitor of MGL⁹⁵. COX-2 can also contribute to 2-arachidonoylglycerol degradation, producing glyceryl prostaglandins⁹⁶.

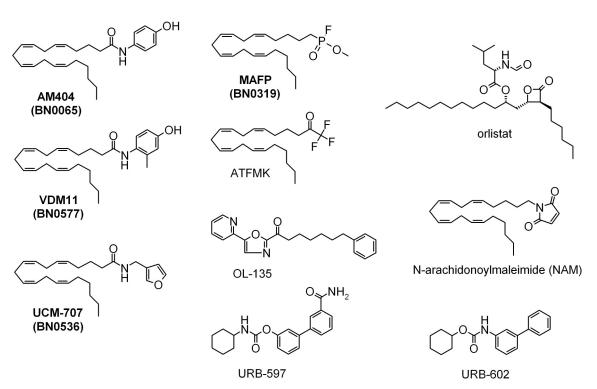
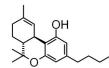
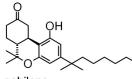
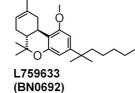




Fig. 3. Modulators of endocannabinoid production, membrane transport and degradation. Bold text indicates compounds available from BIOTREND (with catalogue numbers).

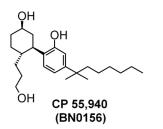


(-)-∆⁹-tetrahydrocannabinol (BN0614)

nabilone

L759656

OH


HU-210

(BN0622)

Cannabinoid receptor agonists

Cannabinoid receptor agonists can be divided into different chemical classes: classical cannabinoids (Fig. 4), synthetic nonclassical cannabinoids (Fig. 5), aminoalkylindoles (Fig. 6) and eicosanoids (Fig. 7). Table 2 shows affinities of the agonists for CB_1 and CB_2 receptors; the compounds are grouped according to their receptor selectivity. The classical cannabinoids are synthesized by *Cannabis sativa* or are chemically closely related relatives of such substances. The structure of synthetic nonclassical cannabinoids resemble that of classical cannabinoids. Another line of cannabinoid agonists, that of the "eicosanoids" derives from the endocannabinoids. The first aminoalkylindole-type cannabinoid ligand (R-(+)-WIN55212) was discovered by serendipity; therefore, it is not not surprizing, that the structures within this group do not resemble the structure of phytocannabinoids or endocannabinoids.

HO

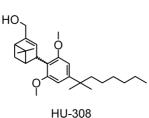


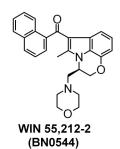
Fig. 5. Agonists of CB_1 and CB_2 receptors:

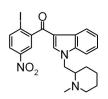
synthetic nonclassical cannabinoids. The bold text indicates a compound available from **BIOTREND** (with catalogue number).

JWH-133 (BN0633)

Fig. 4. Agonists of CB₁ and CB₂ receptors: classical cannabinoids. Bold text indicates compounds available from **BIOTREND** (with catalogue numbers).

JWH-139


Table 2. CB₁ and CB₂ receptor agonists


CB ₁ -selective	Affinity for CB 1 ^a (nM)	Affinity for CB₂ ^a (nM)	References
ACEA	1.4	>2000	144
ACPA	2.2	715	144
0-1812	3.4	3870	144
noladin ether	21	>3000	46
0-585	8.6	324	29
CB ₂ -selective			
L759656	4888	12	146
L759633	1043	6	146
JWH-139	2290	14	147
JWH-133	677	3	147
HU-308	> 10000	23	148
JWH-015	336	14	149
AM1241	580	7	150
Sch35966	2633	7	151
non-selective			
(-)-Ƽ-tetrahydro- cannabinol	41 ^b	36 ^b	29
∆ [®] -tetrahydro- cannabinol	44	44	147
HU-210	0.7	0.2	29
nabilone	2.2	1.8	152
CP 55,940	0.6	0.7	29
R-(+)-WIN55212 (WIN 55,212-2)	1.9	0.3	29
anandamide	89 ^b	371 ^b	29
R-(+)-methanan- damide	28 ^b	868	153
virodhamine	1906 ^b	1401	45
2-arachidonoyl- glycerol	58	145	154

^a The values are K_i or K_d values determined in radioligand binding studies carried out on membranes prepared from native tissues or transfected cells expressing CB₁ or CB₂ receptors. In some cases, EC_{50}/IC_{50} values determined in functional studies (membrane binding of [³⁵S]GTPγS or inhibition of forskolin-stimulated adenylate cyclase) are given.

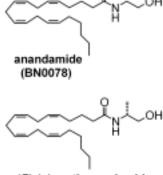
Note that the affinity values of the eicosanoids can greatly vary depending whether metabolizing enzymes are inhibited or not.

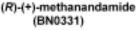

^b These compounds behave in several test systems as partial agonists.

Fig. 7. Agonists of CB₁ **and CB**₂ **receptors: eicosanoids.** Bold text indicates compounds available from **BIOTREND** (with catalogue numbers).

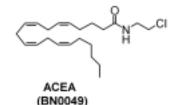
JWH-015

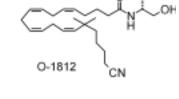
(BN0280)

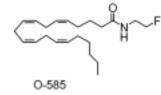

Fig. 6. Agonists of CB₁ and CB₂ receptors: aminoalkylindoles. Bold text indicates compounds available from **BIOTREND**

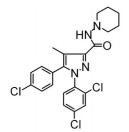

(with catalogue numbers).

It is remarkable that many CB₁-selective agonists are eicosanoids (all the compounds shown in Table 2). The CB₂-selective agonists are chemically more heterogenous: classical cannabinoids (L759656, L759633, JWH-133, JWH-139), synthetic nonclassical cannabinoids (HU-308) and aminoalkylindoles (JWH-015, AM1241) are all represented in the group. The group of agonists which do not distinguish between CB₁- and CB₂ receptors is also chemically heterogenous. It is remarkable that the phytocannabinoids Δ^9 tetrahydrocannabinol and Δ^8 -tetrahydrocannabinol and the endocannabinoids anandamide and 2-arachidonoylglycerol are not selective for the one or the other cannabinoid receptor. The synthetic nonclassical cannabinoid CP 55,940 and the aminoalkylindole R-(+)-WIN55212 are the most frequently used synthetic cannabinoid agonists. R-(+)-methanandamide is an anandamide analogue which is rather resistant against enyzymatic hydrolysis; this is an obvious advantage in studies on organs in vitro or in vivo.

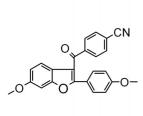

Some of the compounds shown in Table 2 (e.g., $(-)-\Delta^9$ -tetrahydrocannabinol, R-(+)-WIN55212, CP 55,940, HU-210 and R-(+)methanandamide) possess stereoisomers which have markedly lower affinity for the cannabinoid receptors.

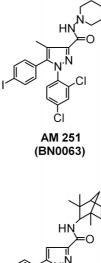

It must be noted that not all agonists shown in Table 2 are capable of fully activating the cannabinoid receptors. The two important cannabinoids Δ^9 -tetrahydrocannabinol and anandamide are notorious partial agonists at stimulating [³⁵S]GTP γ S binding, at inhibiting adenylate cyclase and at inhibiting synaptic transmission⁹⁷⁻¹⁰⁴.



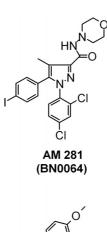


ACPA (BN0561)





rimonabant (SR141716A)



LY 320135 (BN0315)

Table 3. CB₁ and CB₂ receptor antagonists

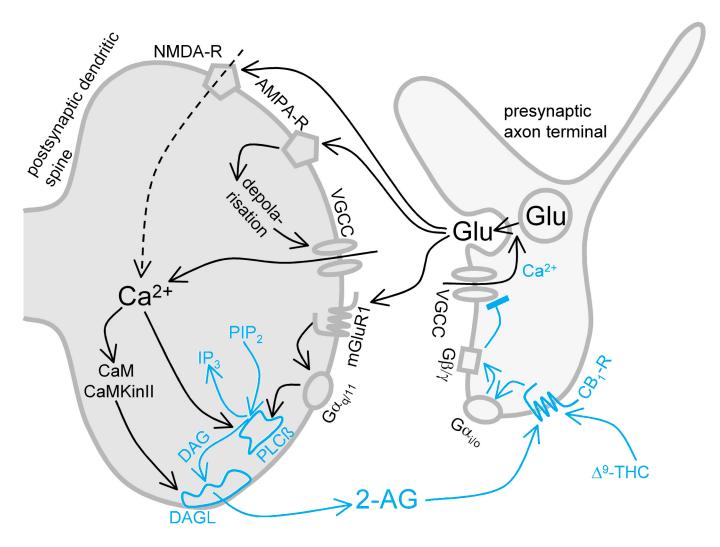
CB1-selective	Affinity for CB₁ ^a (nM)	Affinity for CB₂ ^a (nM)	References
rimonabant	2 (IA)	> 1000	155
(SR141716)			
AM 251	8 (IA)	2290	156
AM 281	12 (IA)	4200	157
LY320135	141 (IA)	14900	158
MK0364	0.3 (IA)	290	159
SLV319	8	7943	160
"Neutral" antagonists			
NESS0327	0.00035	21	161
VCHSR	31		162
0-2654	114		31
CB ₂ -selective			
SR144528	437	0.6 (IA)	163
AM 630	5152	31 (IA)	146
JTE907	2370	36 (IA)	164
Sch336	905	0.4 (IA)	165

^a The values are K_i or K_d values determined in radioligand binding studies or antagonist K_b values determined in functional agonist / antagonist interaction assays. Most of the studies were carried out on membranes prepared from native tissues or transfected cells expressing CB₁ or CB₂ receptors. IA indicates inverse agonistic proterty.

AM 630

(BN0067)

Fig. 8. CB₁ and CB₂ receptor antagonists. Bold text indicates compounds available from **BIOTREND** (with catalogue numbers).


Cannabinoid receptor antagonists (Fig. 8 and Table 3)

For a review of cannabinoid receptor antagonists see ref.¹⁰⁵. The first selective CB_1 receptor antagonist, SR141716 (now called rimonabant) was discovered in 1994 at Sanofi pharmaceutical company. Rimonabant is a diaryl pyrazole derivative, and the chemical structures of several other CB_1 antagonists (AM 251, AM 281, SR147778) resemble the structure of rimonabant. However, several antagonists belonging to different chemical classes have been developed (e.g., LY320135).

Most of the CB₁ antagonists are not neutral: they do not only block the effects of exogenous or endogenous agonists, but due to their inverse agonistic action, they inhibit constitutively active CB₁ receptors^{106,107} (for review see ref.¹⁰⁸). Often, it cannot be determined whether an in vivo effect is due to blockade of the effects of endocannabinoids or to an inverse agonistic action. However, the solution for the problem is in progress: recently, CB₁ antagonists without inverse agonistic properties were synthesized (e.g., NESS0327, VCHSR, 0-2654).

 ${\rm CB}_1$ antagonists were invaluable for verifying the involvement of ${\rm CB}_1$ receptors in the pharmacological effects of exogenous cannabinoids and in the physiological effects of endocannabinoids. The prototype compound, rimonabant, has been recently introduced for the treatment of obesity. Thus, remarkably, a ${\rm CB}_1$ antagonist is the first licensed cannabinoid drug which is available for a broad patient population.

The first CB₂ receptor antagonist, SR144528, was also synthesized by Sanofi researchers. Other CB2-selective antagonists are: AM 630, JTE-907 and Sch336. Notably, most of the CB₂ antagonists are also inverse agonists. Compared with the CB₁ antagonists, the development of the clinical application of CB₂ antagonists is less advanced. But, based on the presence of CB₂ receptors in many types of immune cells, it is thought that CB₂ antagonists might function as antiinflammatory and antiallergic drugs.

Figure 9. Inhibition of synaptic transmission by exogenous and endogenous cannabinoids.

CB₁ receptors are localized on the presynaptic axon terminal. Their activation leads to activation of $G\alpha_{i/o}$ proteins, liberation of β/γ proteins, inhibition of voltage-gated calcium channels (VGCCs) and, finally, to inhibition of glutamate (Glu) release from synaptic vesicles. The CB₁ receptors can be activated by exogenous cannabinoids, for example Δ^9 -THC, or by the endocannabinoid 2-arachidonoylglycerol (2-AG) which is released from the dendritic spine of the postsynaptic neuron. For the production of 2-AG, at first phosphatidylinositoldiphosphate (PIP₂) is cleaved by phospholipase Cß (PLCß), then the resulting diacylglycerol (DAG) is hydrolyzed by diaclyglycerol lipase (DAGL). 2-AG production is triggered by two mechanisms: 1) Calcium entering the spine via VGCCs can stimulate DAGL or PLCβ; 2) Activated metabotropic glutamate receptors can stimulate PLC β via $G\alpha_{q/11}$ proteins. This 2-AG-mediated retrograde synaptic signaling is the basis of several types of short- and long-term synaptic plasticity.

Effects mediated by cannabinoid receptors

In agreement with the widespread distribution of the cannabinoid receptors, many pharmacological effects of exogenous cannabinoids and physiological effects of endocannabinoids have been observed. There are more observations on the involvement of CB_1 receptors than on the involvement of CB_2 receptors. Intensive research is going on to utilize the cannabinoid receptors as therapeutic targets (for review see ref.¹⁰⁹). Some examples of cannabinoid receptor-mediated effects are mentioned below.

Administration of CB₁ receptor-activating cannabinoids elicits a characteristic "tetrad" of effects in mice: depression of locomotion, antinociception, hypothermia and catalepsy¹¹⁰. Cannabinoids are self-administered and induce conditioned place preference. Moreover, continued administration leads to tolerance and dependence. All these observations indicate that cannabinoids are rewarding and addictive also in animals (for review see refs.¹¹¹⁻¹¹⁵). Anticonvulsive effects of exogenous agonists and endocannabinoids and CB₁ receptor-mediated neuroprotection during ischemia and after traumatic brain injury can be potentially used in therapy^{116,117} (for review see ref.¹¹⁸). Exogenous cannabinoids and endocannabinoids released during different circulatory shock conditions cause cardiovascular depression including lowered sympathetic transmitter release and vasodilation¹¹⁹⁻¹²¹.

 CB_1 receptor-mediated analgesia has attracted much interest, because of its obvious therapeutic implications (for review see refs.^{122,123}). Activation of CB_1 receptors at several levels of the ascending pain transmission / processing pathway can lead to analgesia. Recent results point to a prominent role of CB_1 receptors on axon terminals of primary nociceptive neurons in the analgesia produced by systemically administered cannabinoids¹²⁴: this observation opens up the way for generation of peripherally acting cannabinoid analgesics without centrally elicited side effects. Interestingly, endocannabinoids released during inflammation, neuropathic conditions and stress also modulate nociception^{95,125}.

Unexpectedly, CB_2 receptors can also elicit analgesia, even in the case of neuropathic pain¹²⁶⁻¹²⁸. CB_2 receptors expressed on immune and glial cells are likely targets of cannabinoids eliciting antinociception¹²⁹. However, evidence was recently obtained that the CB_2 receptor is expressed in pain processing neurons after sensory neuron injury¹³⁰. The obvious advantage of CB_2 agonists for analgesia would be the lack of unwanted psychotropic effects which are connected with the use of agonists activating CB_1 receptors.

It seems that behind many complex cannabinoid effects on the nervous system in vivo, there is one single basic neurophysiological action: inhibition of neurotransmitter release from axon terminals (Fig. 9). Presynaptic CB₁ receptors are present on terminals of many GABAergic, glutamatergic, cholinergic and noradrenergic axons in the central and peripheral nervous system and their activation leads to presynaptic inhibition of neurotransmission¹³¹⁻¹³⁴ (for review see refs.^{135,136}). The most likely primary mechanism behind the inhibition of neurotransmitter release is inhibition of voltage-gated calcium channels in the axon terminals - mediated by the G protein $\beta\gamma$ subunits.

The presynaptic CB₁ receptors can be activated by exogenous cannabinoids and endocannabinoids. The somatodendritic regions of many neurons produce endocannabinoids in response to two stimuli: depolarization followed by opening of voltage-gated calcium channels and activation of $G\alpha_{q/11}$ protein-coupled receptors. After synthesis, the endocannabinoids are released from the post-synaptic neurons and diffuse to presynaptic axon terminals, where they activate presynaptic CB₁ receptors and thereby inhibit transmitter release (Fig. 9). This kind of retrograde synaptic signaling has been observed at many GABAergic and glutamatergic synapses of the central nervous system (for an example see ref.¹³⁷; for review see refs.^{138,139}). In many cases, it is the basis of shortand long-term synaptic plasticity. Thus, endocannabinoid-mediated retrograde signaling is thought to be important for memory and learning.

References

- Hillard, C.J. et al. (1985) Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies. J. Pharmacol Exp. Ther. 232, 579-588.
- 2. Matsuda, L.A. et al. (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561-564.
- 3. Munro, S. et al. (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61-65.
- 4. Howlett, A.C. et al. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161-202.
- Abood, M.E. (2005) Molecular biology of cannabinoid receptors. Handb. Exp. Pharmacol. 168, 81-115.
- 6. Brown, A.J. (2007) Novel cannabinoid receptors. Br. J. Pharmacol. 152, 567-575.
- 7. Howlett, A.C. (2005) Cannabinoid receptor signaling. Handb. Exp.Pharmacol. 168, 53-79.
- Mackie, K. et al. (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type Calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J. Neurosci. 15, 6552-6561.
- Twitchell, W. et al. (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol. 78, 43-50.
- Felder, C.C. et al. (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB₁ and CB₂ receptors. Mol.Pharmacol. 48, 443-450.
- Bouaboula, M. et al. (1995) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB₁. Biochem. J. 312, 637-641.
- Bouaboula, M. et al. (1996) Signaling pathway associated with stimulation of CB₂ peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur. J.Biochem. 237, 704-711.
- Mackie, K. (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. 168, 299-325.
- Galiegue, S. et al. (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J.Biochem. 232, 54-61.
- Whiteside, G.T. et al. (2007) The role of the cannabinoid CB₂ receptor in pain transmission and therapeutic potential of small molecule CB₂ receptor agonists. Curr. Med. Chem. 14, 917-936.
- Gong, J.-P. et al. (2006) Cannabinoid CB₂ receptors: immunohistochemical localization in rat brain. Brain Res. 1071, 10-23.
- Van Sickle, M.D. et al. (2005) Identification and functional characterization of brainstem cannabinoid CB₂ receptors. Science 310, 329-332.
- Begg, M. et al. (2005) Evidence for novel cannabinoid receptors. Pharmacol. Therap. 106, 133-145.
- 19. Mackie, K.; Stella, N. (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 8, E298-E306 (article 34).
- 20. Johns, D.G. et al. (2007) The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br. J. Pharmacol. 152, 825-831.
- 21. Ryberg, E. et al. (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 152, 1092-1101.
- 22. Oka, S. et al. (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Comm. 362, 928-934.
- Zimmer, A. et al. (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB₁ receptor knockout mice. Proc. Natl. Acad. Sci. 96, 5780-5785.
- Ledent, C. et al. (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB₁ receptor knockout mice. Science 283, 401-404.
- Buckley, N.E. et al. (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB₂ receptor. Eur. J. Pharmacol. 396, 141-149.
- Jarai, Z. et al. (1999) Cannabioid-induced mesenteric vasodilation through an endothelial site distinct from CB₁ or CB₂ receptors. Proc. Natl. Acad. Sci. 96,14136-14141.
- 27. ElSohly, M.A.; Slade, D. (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 78, 539-548.
- Rhee, M.-H. et al. (1997) Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J. Med. Chem. 40, 3228-3233.
- Showalter, V.M. et al. (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB₂): Identification of cannabinoid receptor subtype selective ligands. J. Pharmacol. Exp. Ther. 278, 989-999.
- Thomas, B.F. et al. (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J. Pharmacol. Exp. Ther. 285, 285-292.
- Thomas, A. et al. (2004) 6"-Azidohex-2"-yne-cannabidiol: a potential neutral, competitive cannabinoid CB₁ receptor antagonist. Eur. J. Pharmacol. 487, 213-221.
- Thomas, A. et al. (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB₁ and CB₂ receptor agonists in vitro. Br. J. Pharmacol. 150, 613-623.

References

- 33. Mechoulam, R. et al. (2007) Cannabidiol recent advances. Chem. Biodivers. 4,1678-1692.
- 34. Thomas, A. et al. (2005) Evidence that the plant cannabinoid Δ^9 -tetrahydrocannabivarin is a cannabinoid CB₁ and CB₂ receptor antagonist. Br. J. Pharmacol. 146, 917-926.
- Pertwee, R.G. et al. (2007) The psychoactive plant cannabinoid, Δ⁹-tetrahydrocannabinol, is antagonized by Δ⁸- and Δ⁹-tetrahydrocannabivarin in mice in vivo. Br. J. Pharmacol. 150, 586-594.
- 36. Devane, W.A. et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946-1949.
- Mechoulam, R. et al. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90.
- Sugiura, T. et al. (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97.
- Sugiura, T. et al. (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog. Lipid Res. 45, 405-446.
- **40.** Felder, C.C. et al. (1996) Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett. 393, 231-235.
- Stella, N. et al. (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773-778.
- 42. Zygmunt, P.M. et al. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452-457.
- Smart, D. et al. (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol. 129, 227-230.
- 44. Starowicz, K. et al. (2007) Biochemistry and pharmacology of endovanilloids. Pharmacol. Therap. 114, 13-33.
- Porter, A.C. et al. (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB₁ receptor. J. Pharmacol. Exp.Ther. 301, 1020-1024.
- Hanus, L. et al. (2001) 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB₁ receptor. Proc. Natl. Acad. Sci. 98, 3662-3665.
- Oka, S. et al. (2003) Ether-linked analogue of 2-arachinoylglycerol (noladin ether) was not detected in the brains of various mammalian species. J. Neurochem. 85, 1374-1381.
- Bisogno, T. et al. (2000) N-acyl-dopamines: novel synthetic CB₁ cannabinoidreceptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem. J. 351, 817-824.
- Huang, S.M. et al. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. 99, 8400-8405.
- Huang, S.M. et al. (2001) Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J. Biol. Chem. 276, 42639-42644.
- 51. Okamoto, Y. et al. (2007) Biosynthetic pathways of the endocannabinoid anandamide. Chem. Biodivers. 4, 1842-1857.
- 52. Di Marzo, V. et al. (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686-691.
- 53. Cadas, H. et al. (1996) Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J. Neurosci. 16, 3934-3942.
- Cadas, H. et al. (1997) Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J. Neurosci. 17, 1226-1242.
- 55. Okamoto, Y. et al. (2004) Molecular characterization of a phospholipase D gene rating anandamide and its congeners. J. Biol. Chem. 279, 5298-5305.
- Leung, D. et al. (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochem. 45, 4720-4726.
- 57. Liu, J. et al. (2006) A biosynthetic pathway for anandamide. Proc. Natl. Acad. Sci. 103, 13345-13350.
- Simon, G.M.; Cravatt, B. F. (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for α/β-hydrolase 4 in this pathway. J. Biol. Chem. 281, 26465-26472.
- 59. Fowler, C.J. (2006) The cannabinoid system and its pharmacological manipulation a review, with emphasis upon the uptake and hydrolysis of anandamide. Fundam. Clin. Pharmacol. 20, 549-562.
- Beltramo, M. et al. (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277, 1094-1097.
- De Petrocellis, L. et al. (2000) Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett. 483, 52-56.

- 62. Moore, S.A. et al. (2005) Identification of a high-affinity binding site involved in the transport of endocannabinoids. Proc. Natl. Acad. Sci. 102, 17852-17857.
- 63. Deutsch, D.G. et al. (2001) The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. J. Biol. Chem. 276, 6967-6973.
- 64. Glaser, S.T. et al. (2003) Evidence against the presence of an anandamide transporter. Proc. Natl. Acad. Sci. 100, 4269-4274.
- Deutsch, D.G.; Chin, S. A. (1993) Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem. Pharmacol. 46, 791-796.

- McKinney, M.K.; Cravatt, B. F. (2005) Structure and function of fatty acid amide hydrolase. Ann. Rev. Biochem. 74, 411-432.
- 67. Cravatt, B.F. et al. (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83-87.
- Cravatt, B.F. et al. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. 98, 9371-9476.
- 69. Cravatt, B.F. et al. (2004) Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl. Acad. Sci. 101, 10821-20826.
- Wei, B.Q. et al. (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J. Biol. Chem. 281, 36569-36578.
- Koutek, B. et al. (1994) Inhibitors of arachidonoyl ethanolamide hydrolysis. J. Biol. Chem. 269, 22937-22940.
- Goparaju, S.K. et al. (1999) Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors. Biochem. Pharmacol. 57, 417-423.
- 73. Bisogno, T. et al. (1998) Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem. Biophys. Res. Comm. 248, 515-522.
- Boger, D.L. et al. (2000) Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of enodgenous oleamide and anandamide. Proc. Natl. Acad. Sci. 97, 5044-5049.
- 75. Kathuria, S. et al. (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nature Med. 9, 76-81.
- 76. Yu, M. et al. (1997) Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J. Biol. Chem. 272, 21181-21186.
- Bisogno, T. et al. (1997) Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem. J. 322, 671-677.
- 78. Kondo, S. et al. (1998) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identication as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through Ca²⁺-dependent and -independent mechanisms. FEBS Lett. 429, 152-156.
- Jung, K.-M. et al. (2005) Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors. Mol. Pharmacol. 68, 1196-1202.
- 80. Maejima, T. et al. (2005) Synaptically driven endocannabinoid release requires Ca²⁺-assisted metabotropic glutamate receptor subtype 1 to phospholipase C ß4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826-6835.
- Witting, A. et al. (2004) P2X₇ receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl. Acad. Sci. 101, 3214-3219.
- Prescott, S.M.; Majerus, P. W. (1983) Characterization of 1,2-diacylglycerol hydrolysis in human platelets. J. Biol. Chem. 258, 764-769.
- Di Marzo, V. et al. (1999) Biosynthesis and inactivation of the endocannabinoid 2-arachidonoy/glycerol in circulating and tumoral macrophages. Eur. J. Biochem. 264, 258-267.
- Hashimotodani, Y. et al. (2007) Ca²⁺-assisted receptor-driven endocannabinoid release: mechanisms that associate presynaptic and postsynaptic activities. Curr. Opi. Neurobiol. 17, 1-6.
- Bisogno, T. et al. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell. Biol. 163, 463-468.
- Moriyama, T. et al. (1999) Purification and characterization of diacylglycerol lipase from human platelets. J. Biochem. 125, 1077-1085.
- 87. Bisogno, T. et al. (2006) Development of the first potent and specific inhibitors of endocannabinoid biosynthesis. Biochim. Biophys. Acta 1761, 205-212.
- Bisogno, T. et al. (1999) Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J. Neurochem. 72, 2113-2119.
- Nakane, S. et al. (2002) 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch. Biochem. Biophys. 402, 51-58.
- 90. Karlsson, M. et al. (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. J. Biol. Chem. 272, 27218-27223.
- 91. Dinh, T.P. et al. (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. 99, 10819-10824.

- Saario, S.M.; Laitinen, J. T. (2007) Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem. Biodivers. 4, 1903-1913.
- Saario, S.M. et al. (2004) Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem. Pharmacol. 67, 1381-1387.

- Saario, S.M. et al. (2005) Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem. Biol. 12, 649-656.
- 95. Hohmann, A.G. et al. (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108-1112.
- Kozak, K.R. et al. (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem. 275, 33744-33749.
- Bayewitch, M. et al. (1996) (-)-Δ⁹-Tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase. J. Biol. Chem. 271, 9902-9905.
- Sim, L.J. et al. (1996) Effects of chronic treatment with Δ⁹-tetrahydrocannabinol on cannabinoid-stimulated [³⁵S]GTPγS autoradiography in rat brain. J. Neurosci. 16, 8057-8066.
- Griffin, G. et al. (1998) Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5⁻⁰-(3-[³⁵S]thio)-triphosphate binding assay in rat cerebellar membranes. J. Pharmacol. Exp. Ther. 285, 553-560.
- 100. Breivogel, C.S.; Childers, S. R. (2000) Cannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition. J. Pharmacol. Exp. Ther. 295, 328-336.
- 101. Shen, M.; Thayer, S. A. (1999) Δ⁹-Tetrahydrocannabinol acts as a partial agonist to modulate glutamatergic synaptic transmission between rat hippocampal neurons in culture. Mol. Pharmacol. 55, 8-13.
- 102. Gonsiorek, W. et al. (2000) Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol. Pharmacol. 57, 1045-1050.
- 103. Kelley, B.G.; Thayer, S. A. (2004) Δ^9 -Tetrahydrocannabinol antagonizes endocannabinoid modulation of synaptic transmission between hippocampal neurons in culture. Neuropharmacol. 46, 709-715.
- 104. Stern, E.; Lambert, D. M. (2007) Medicinal chemistry endeavors around the phytocannabinoids. Chem Biodivers. 4, 1707-1728.
- 105. Muccioli, G.G. (2007) Blocking the cannabinoid receptors: drug candidates and therapeutic promises. Chem. Biodivers. 4, 1805-1827.
- 106. Pertwee, R.G. et al. (1996) Further evidence for the presence of cannabinoid CB₁ receptors in guinea-pig small intestine. Br. J. Pharmacol. 118, 2199-2205.
- 107. MacLennan, S.J. et al. (1998) Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB₁ and CB₂ receptors. Br. J. Pharmacol. 124, 619-622.
- 108. Pertwee, R.G. (2005) Inverse agonism and neutral antagonism at cannabinoid CB₁ receptors. Life Sci. 76, 1307-1324.
- 109. Mackie, K. (2006) Cannabinoid receptors as therapeutic targets. Ann. Rev. Pharmacol. Toxicol. 46, 101-122.
- 110. Compton, D.R. et al. (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities.
 J. Pharmacol. Exp. Ther. 265, 218-226.
- 111. Maldonado, R. (2002) Study of cannabinoid dependence in animals. Pharmacol. Therap. 95, 153-164.
- 112. Tanda, G.; Goldberg, S. R. (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms - a review of recent preclinical data. Psychopharmacol. 169, 115-134.
- 113. Fattore, L. et al. (2004) Cannabinoids and reward: interactions with the opioid system. Crit. Rev. Neurobiol. 16, 147-158.
- 114. Lupica, C.R. et al. (2004) Marijuana and cannabinoid regulation of brain reward circuits. Br. J. Pharmacol. 143, 227-234.
- 115. Justinova, Z. et al. (2005) Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol. Biochem. Behav. 81, 285-299.
- 116. Panikashvili, D. et al. (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527-531.
- 117. Marsicano, G. et al. (2003) CB₁ cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84-88.
- 118. van der Stelt, M. et al. (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol. Neurobiol. 26, 317-346.
- Niederhoffer, N.; Szabo, B. (1999) Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br. J. Pharmacol. 126, 457-466.
- 120.Wagner, J.A. et al. (1998) Cardiovascular actions of cannabinoids and their generation during shock. J. Mol. Med. 76, 824-836.
- 121. Pacher, P. et al. (2005) Cardiovascular pharmacology of cannabinoids. Handb. Exp. Pharmacol. 168, 599-625.
- 122. Walker, J.M.; Hohmann, A. G. (2005) Cannabinoid mechanisms of pain suppression. Handb. Exp. Pharmacol. 168, 509-554.

- 123. Lever I. J.; Rice, A. S. C. (2006) Cannabinoids and pain. Handb. Exp. Pharmacol. 177, 259-300.
- 124. Agarwal, N. et al. (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10, 870-879.
- 125. Jhaveri, M.D. et al. (2007) Endocannabinoid metabolism and uptake: novel targets for neuropathic and inflammatory pain. Br. J. Pharmacol. 152, 624-632.
- 126. Ibrahim, M.M. et al. (2003) Activation of CB₂ cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS. Proc. Natl. Acad. Sci. 100, 10529-10533.
- 127. Ibrahim, M.M. et al. (2005) CB₂ cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc. Natl. Acad. Sci. 102, 3093-3098.
- 128. Malan Jr, P.T. et al. (2003) CB₂ cannabinoid receptor agonists: pain relief without psychoactive effects? Curr. Opi. Pharmacol. 3, 62-67.
- 129. Zhang, J. et al. (2003) Induction of CB₂ receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci. 17, 2750-2754.
- 130.Wotherspoon, G. et al. (2005) Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neurosci. 135, 235-245.
- 131. Szabo, B. et al. (1998) Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neurosci. 85, 395-403.
- 132. Szabo, B. et al. (2000) Cannabinoids inhibit excitatory neurotransmission in the substantia nigra pars reticulata. Neurosci. 97 , 89-97.
- 133.Hoffman, A.F.; Lupica, C. R. (2000) Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci. 20, 2470-2479.
- 134. Freiman, I. et al. (2006) Analysis of the effects of cannabinoids on identified synaptic connections in the caudate-putamen by paired recordings in transgenic mice. J. Physiol. 575, 789-806.
- 135. Schlicker, E.; Kathmann, M. (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci. 22, 565-572.
- 136. Szabo, B.; Schlicker, E. (2005) Effects of cannabinoids on neurotransmission. Handb. Exp. Pharmacol. 168, 327-365.
- 137. Szabo, B. et al. (2006) Depolarization-induced retrograde synaptic inhibition in the cerebellar cortex is mediated by 2-arachidonoylglycerol. J. Physiol. 577, 263-280.
- 138. Freund, T.F. et al. (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017-1066.
- 139. Chevaleyre, V. et al. (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Ann. Rev. Neurosci. 29, 37-75.
- **140.** Lopez-Rodriguez, M.L. et al. (2001) Design, synthesis and biological evaluation of novel arachidonic acid derivatives as highly potent and selective endocannabinoid transporter inhibitors. J. Med. Chem. 44, 4505-4508.
- 141. Lichtman, A.H. et al. (2004) Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J. Pharmacol. Exp. Ther. 311, 441-448.
- 142. Vandevoorde, S.; Fowler, C. J. (2005) Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br. J. Pharmacol. 145, 885-893.
- 143. Alexander, J.P.; Cravatt, B. F. (2006) The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases. J. Am. Chem. Soc. 128, 9699-9704.
- 144. Hillard, C.J. et al. (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB₁).
 J. Pharmacol. Exp. Ther. 289, 1427-1433.
- 145. Di Marzo, V. et al. (2001) Highly selective CB₁ cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor "hybrid" ligands. Biochem. Biophys. Res. Comm. 281, 444-451.
- 146. Ross, R.A. et al. (1999) Agonist-inverse agonist characterization at CB₁ and CB₂ cannabinoid receptors of L759633, L759656 and AM630. Br. J. Pharmacol .126, 665-672.
- 147. Huffman, J.W. et al. (1999) 3-(1,1) -Dimethylbutyl)-1-deoxy-Δ⁸-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorg. Med. Chem. 7, 2905-2914.
- 148. Hanus, L. et al. (1999) HU-308: a specific agonist for CB₂, a peripheral cannabinoid receptor. Proc. Natl. Acad. Sci .96, 14228-14233.
- 149. Aung, M.M. et al. (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB₁ and CB₂ receptor binding. Drug Alcohol Depend. 60, 135-140.
- 150.Yao, B.B. et al. (2006) In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB₂ receptor? Br. J. Pharmacol. 149, 145-154.
 151. Grained With Control of Control
- 151. Gonsiorek, W. et al. (2007) Sch35966 is a potent, selective agonist at the peripheral cannabinoid receptor (CB₂) in rodents and primates.
 Br. J. Pharmacol. 151, 1262-1271.
- 152. Gareau, Y. et al. (1996) Structure activity relationships of tetrahydrocannabinol analogues on human cannabinoid receptors. Bioorg. Med. Chem. Lett. 6, 189-194.

References

- 153. Lin, S. et al. (1998) Novel analogues of arachidonylethanolamide (anandamide): affinities for the CB₁ and CB₂ cannabinoid receptors and metabolic stability. J. Med. Chem. 41, 5353-5361.
- 154. Ben-Shabat, S. et al. (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 353, 23-31.
- 155. Rinaldi-Carmona, M. et al. (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240-244.
- 156.Lan, R. et al. (1999a) Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J. Med. Chem. 42, 769-776.
- 157. Lan, R. et al. (1999b) Design and synthesis of the CB₁ selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS Pharmsci 1, 1-7 (article 4).
- 158. Felder, C.C. et al. (1998) LY320135, a novel cannabinoid CB₁ receptor antagonist, unmasks coupling of the CB₁ receptor to stimulation of cAMP accumulation. J. Pharmacol. Exp. Ther. 284, 291-297.
- 159.Lin, L.S. et al. (2006) Discovery of N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-{[5-(trifluoromethyl) pyridin-2-yl]oxy}propanamide (MK-0364), a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. J. Med. Chem. 49, 7584-7587.
- 160.Lange, J.H.M. et al. (2004) Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB₁ cannabinoid receptor antagonists. J. Med. Chem. 47, 627-643.
- 161. Ruiu, S. et al. (2003) Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB₁ cannabinoid receptor. J. Pharmacol. Exp. Ther. 306, 363-370.
- 162. Hurst, D.P. et al. (2002) N-(Piperidin-1-yl)-5-(4-chlorophenyl) -1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) interaction with LYS 3.28(192) is crucial for its inverse agonism at the cannabinoid CB₁ receptor. Mol. Pharmacol. 62, 1274-1287.
- 163. Rinaldi-Carmona, M. et al. (1998) SR 144528, the first potent and selective antagonist of the CB₂ cannabinoid receptor.
 J. Pharmacol. Exp. Ther. 284, 644-650.
- 164. Iwamura, H. et al. (2001) In vitro and in vivo phramacological characterization of JTE-907, a novel selective ligand for cannabinoid CB₂ receptor.
 J. Pharmacol. Exp. Ther. 296, 420-425.
- 165. Lavey, B.J. et al. (2005) Triaryl bis-sulfones as a new class of cannabinoid CB₂ receptor inhibitors: identification of a lead and initial SAR studies. Bioorg. Med. Chem. Lett. 15, 783-786.

Cannabinoid Receptor Compounds

CB ₁ Rece	ptor Selective	
Cat. No.	Product	Category
BN0049	ACEA	Selective, potent CB, agonist
BN0561	ACPA	Selective, potent CB agonist
BN0176	DEA	Endogenous CB ₁ agonist
BN0331	(R)-(+)-Methanandamide	Selective, potent CB ₁ agonist
BN0359	NADA [†]	Endogenous CB ₁ agonist, FAAH/AMT inhibitor, VR1 agonist
BN0390	Noladin ether	Endogenous CB, agonist
BN0397	Oleamide	CB ₁ agonist, potentiator at 5-HT _{2A/2c} receptors
BN0063	AM 251	Selective, potent CB, antagonist
BN0064	AM 281	Selective, potent CB ₁ antagonist/inverse agonist
BN0315	LY 320135	CB ₁ antagonist/inverse agonist
BN0318	Lylamine hydrochloride	CB ₁ agonist and antifungal agent
BN0319	MAFP	CB, irreversible ligand, potent FAAH inhibitor

[†] NADA = N-Arachidonoyldopamine

Cannabinoid Receptor Compounds

CB₂ Receptor Selective

Cat. No.	Product	Category
BN0125	Cannabinol	CB ₂ agonist
BN0558	GW 405833	Cannabinoid CB ₂ partial agonist
BN0280	JWH 015	Selective CB ₂ agonist
BN0633	JWH 133	Selective, potent CB ₂ agonist
BN0692	L-759,633	Selective, potent CB ₂ agonist
BN0405	Palmitoylethanolamide	Endogenous CB ₂ agonist
BN0067 BN0113	AM 630 BML-190	CB ₂ antagonist/inverse agonist Selective, potent CB ₂ inverse agonist
Non-selective		
BN0078	Anandamide	Endogenous CB agonist, VR1 agonist
BN0007	2-Arachidonoylglycerol	Endogenous CB agonist
BN0156 BN0622	CP 55,940 HU-210	Potent CB agonist
BN0622 BN0614	$(-)-\Delta^{9}$ -Tetrahydrocannabinol	Potent CB agonist
	Virodhamine	CB agonist
BN0539		Endogenous CB ₂ agonist and CB ₁ partial agonist/antagonist
BN0544	WIN 55,212-2 mesylate	CB agonist
BN0545	WIN 55,212-3 mesylate	Less active CB agonist, enantiomer of Cat. No. BN0544

.

Cannabinoid Receptors / Metabolism

Cat. No.	Product	Category
BS0016	AACOCF3	Anandamide hydrolysis inhibitor
BN0045	Abn-CBD	Cannabinoid (abn-CBD)
BN0065	AM 404	Anandamide transport (AMT) inhibitor, VR1 agonist
BN0691	N-ArachidonoylGABA	Arachidonoyl amino acid that inhibits pain
BN0369	N-Arachidonoylglycine	Carboxylic analogue of anandamide, FAAH inhibitor
BN0562	Arvanil	AMT inhibitor, CB ₁ and VR1 agonist
BN0124	(-)-Cannabidiol	Weak CB ₁ antagonist, AMT inhibitor
BN0193	(-)-5'-DMH-CBD	Anandamide transport inhibitor
BN0399	OMDM-2	Potent AMT inhibitor
BN0015	2-Palmitoylglycerol	Cannabinoid endocannabinoid enhancer
BN0406	Palmitoylisopropylamide	FAAH inhibitor
BN0508	STEARDA	Cannabinoid 'entourage effect', also 5-lipoxygenase inhibitor
BN0536	UCM 707	Endocannabinoid transport inhibitor
BN0577	VDM 11	Potent AMT inhibitor
Related Radio	•	
ART-0626	[³ H]-Anandamide	Endogenous CB agonist, VR1 agonist
ART-1448	[³ H]-∆ ⁹ -Tetrahydrocannabidiol	CB agonist
ART-0741	[³ H]-Palmitoyl ethanolamide	Endogenous lipid

Pharmacology of Cannabinoid Receptors, BIOTREND Reviews No. 02, February 2008 © 2008 BIOTREND Chemicals AG Published and distributed by BIOTREND Chemicals AG Managing Directors: Gunther Jaeger, Werner Hassler Managing Editor: Markus Kathmann, Ph.D. Design and Production: Markus Jung, panta rhei **BIOTREND** Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND

BIO

BIOTREND Chemicals AG Unterdorfstrasse 21b CH-8602 Wangen Tel. +41 44 805 76 76 Fax. +41 44 805 76 77 info@biotrend.ch www.biotrend.ch

...distributed by:

BIOTREND Chemikalien GmbH Im Technologiezentrum Köln Eupener Str. 157 D-50933 Köln Tel. +49 221 949 83 20 Fax. +49 221 949 83 25 jaeger@biotrend.com www.biotrend.com

ANAWA Trading SA Unterdorfstrasse 21b CH-8602 Wangen Tel. +41 44 805 76 81 Fax. +41 44 805 76 75 hassler@anawa.ch www.anawa.ch

www.biotrend.ch